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Stratified rotating edge waves
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The dispersion relation is found for edge waves in a rotating stratified fluid over
a constant sloping bottom. The dispersion relation is then extended to the case of
arbitrary gentle bottom bathymetry. Superinertial trapped modes do not exist in the
rigid-lid Boussinesq case. The effect of some of the approximations that have been
made in this problem is discussed.

1. Introduction
Do internal edge waves exist? The existence of trapped edge waves in a homo-

geneous fluid over a sloping bottom has been known since the work of Stokes in 1846.
Ursell (1952) showed that the Stokes edge mode was the first member of a family of
trapped modes, with the number of discrete modes depending on the slope of the
bottom. Dispersion relations for edge waves over arbitrary topography were then
found in the case of gentle bottom slopes by Shen, Meyer & Keller (1968), Miles
(1989) and Zhevandrov (1991, hereafter referred to as Z91) among others.

The effect of rotation was investigated by Ball (1967) in the case of an exponential
bottom profile in the shallow-water approximation. Saint-Guily (1968) found the
lowest two modes for the wedge, and found a difference between waves propagating
with the coast on their right and left, as one would expect. Greenspan (1970) found
the trapped modes for a fluid with constant stratification in a wedge. The Stokes
mode was unaffected. Huthnance (1978) examined subinertial waves for arbitrary
topography. Mysak (1980) reviewed trapped waves.

Evans (1989) used ideas of Whitham (1979) to write down the solution to a
generalization of the Ursell problem, which he described as including Saint-Guily’s
and Greenspan’s results. However there are some technical issues for frequencies in the
internal gravity wave (IGW) band. Somewhat earlier, Ou (1980) had transformed the
problem of trapped subinertial modes (frequencies less than the Coriolis frequency f )
to Ursell’s problem. The existence of trapped superinertial waves, however, remained
an open question. Dale & Sherwin (1996) examined the question numerically but
the superinertial modes they seemed to find appeared unphysical. In addition their
numerical approach only considered a single bottom profile which had a vertical
wall at the coast. Pringle & Brink (1999) returned to the problem and constructed
WKB-like solutions, but required bottom friction and did not actually obtain edge
waves. There have also been attempts (L. R. M. Maas 2003, personal communication)
to construct trapped modes over a constant slope using the modes found by Wunsch
(1969) but such attempts are problematic since the latter modes belong to the
continuum. Table 1 summarizes some of the aforementioned work on edge waves.
There also exists work on wave trapping by seamounts with stratification (e.g. Brink
1984).



162 S. G. Llewellyn Smith

Author f N n Topography Notes

Kelvin � 0 0 Wall at shore Propagates with coast on the right
Stokes 0 0 0 Wedge
Ursell 0 0 all Wedge
Ball � 0 0 Exponential Shallow water
Saint-Guily � 0 0,1 Wedge
Greenspan 0 � all Wedge
Huthnance � � all General Hydrostatic, Boussinesq, subinertial, numerical
Ou � � all Wedge Rigid lid, hydrostatic, Boussinesq, subinertial
Evans � � all Wedge Transformation holds outside IGW band
Zhevandrov 0 0 all General Gentle slope
Dale & Sherwin � � — Special Rigid lid, Boussinesq, numerical , H (0) �= 0
Pringle & Brink � � — Special WKB-like, friction
This paper � � all General Gentle slope

Table 1. Ranges of validity of parameters for selected previous studies on edge waves.

We build on previous work to give the full solution to the problem of edge modes
in a rotating, stratified fluid over a bottom with constant slope or with arbitrary but
gentle bottom profile. The problem is formulated in § 2 and the solution is presented in
§ 3. Special cases and common approximations are discussed in § 4, while the extension
to general topography is given in § 5. Some conclusions are drawn in § 6.

2. Formulation
We consider incompressible flow of an inviscid fluid on an f -plane with no density

diffusion. The x-axis points offshore and the z-axis points up. We take a basic state
at rest with a stable background density profile ρ0(z) in hydrostatic equilibrium and
expand. Disturbances are assumed to be proportional to exp(−iωt), where ω > 0
without loss of generality. The resulting linearized equations can be reduced to a
single equation for pressure (e.g. McKee 1973):

∇2p + ρ0

∂

∂z

[
ρ−1

0

ω2 − f 2

ω2 − N 2

∂p

∂z

]
= 0. (2.1)

The buoyancy frequency is defined by

N 2 ≡ − g

ρ0

dρ0

dz
. (2.2)

The linearized boundary conditions can also be expressed solely in terms of pressure.
At the bottom z = −H (x, y),

ω2 − f 2

ω2 − N 2

∂p

∂z
+ ∇H · ∇p +

if

ω
k · ∇H × ∇p = 0. (2.3)

The free-surface boundary condition at z = 0 is

∂p

∂z
=

ω2 − N 2

g
p; (2.4)

for a rigid lid the right-hand side of (2.4) becomes zero.
A number of approximate sets of equations may be derived from the above. The

hydrostatic limit corresponds to replacing ω2−N 2 by −N2 everywhere. The Boussinesq
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approximation replaces (2.1) by

∇2p +
∂

∂z

[
ω2 − f 2

ω2 − N2

∂p

∂z

]
= 0, (2.5)

where (2.2) becomes N 2 ≡ −(g/ρ∗) dρ0/dz, with ρ∗ a reference density.
We now specialize to the case of constant N2 and constant bottom slope angle

δ. Then the basic-state density is given by ρ0(z) = exp(−bz) with N 2 = gb. We
take 0 < f < N when these frequencies are non-zero. In addition we assume an
alongshore dependence exp (ily). With a right-handed coordinate system, waves with
l > 0 propagate with the coast on their left (since ω > 0). The resulting equation set
is

ω2 − f 2

ω2 − N 2
[pzz + bpz] + pxx − l2p = 0, (2.6a)

pz − ω2 − N 2

g
p = 0 on z = 0, (2.6b)

ω2 − f 2

ω2 − N 2
pz + tan δpx − f l

ω
tan δp = 0 on z = −x tan δ. (2.6c)

3. Edge waves
3.1. Stokes’ edge wave

We start by finding the lowest trapped mode, which is really just Stokes’ mode, by
writing p ∼ exp(−rx − qz). Then we obtain three coupled equations for r , q and ω:

q = − ω2 − N 2

g
, −q

ω2 − f 2

ω2 − N 2
− r tan δ − f l

ω
tan δ = 0,

ω2 − f 2

ω2 − N 2
(q2 − bq) + r2 − l2 = 0.

(3.1)

Solving these equations gives the same result as Saint-Guily: there are two modes
whose frequencies satisfy

ω2

g

(
1 − f

ω
cos δ

)
− l sin δ = 0,

ω2

g

(
1 +

f

ω
cos δ

)
+ l sin δ = 0. (3.2)

This confirms Greenspan’s result that the Stokes mode is independent of stratification.
It does depend on rotation. In particular, for the first mode in (3.2) to be trapped
(i.e. r > 0), its frequency must be above the critical value ωc = f/ cos δ.

3.2. General solution

The results of Greenspan (1970) and of Saint-Guily (1968) suggest that all trapped
modes will take the form of a sum of exponentials. Greenspan gives the result for
arbitrary stratification, but the equations are unwieldy. Evans (1989) gives a general
result but does not explain what happens when the system is hyperbolic, in which case
internal gravity waves can propagate (this would give superinertial trapped modes
in oceanographic parlance). However, the form of (3.2) shows that this restriction
must be artificial and in fact Evans’ results may be extended merely by using analytic
continuation.

We first reduce our system to that considered by Evans by stretching the z-
coordinate using

z =

(
ω2 − f 2

ω2 − N2

)1/2

z̃ = sz̃ (3.3)
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so that the bottom boundary is now at z̃ = −sx tan δ = −x tan β . Changing dependent
variable using p = Se−bz/2 leads to

Sz̃z̃ + Sxx − k2S = 0, (3.4a)

Sz̃ − λS = 0 at z̃ = 0, (3.4b)

cosβSz̃ + sinβSx + αS = 0 at z̃ = −x tan β . (3.4c)

The auxiliary quantities k, λ, β and α are defined by

k2 = l2 +
s2b2

4
, λ= s

[
ω2 − N 2

g
+

b

2

]
, tan β = s−1 tan δ, α = − f l

ω
sin β − sb

2
cos β.

(3.5)

Evans’ solution was derived for real s, but we disregard this and use it for all values.
The dispersion relation is written

λ = (k2 − α2)1/2 sin (2n + 1)β − α cos (2n + 1)β (3.6a)

= k sin [(2n + 1)β − χ] where α = k sin χ. (3.6b)

This may be recast as a quadratic equation for l given ω. The condition for trapping
can be obtained by expressing r , the offshore decay rate, for the Stokes mode from
(3.1) in terms of α, λ, and β . This gives r = (α+λ cos β)/ sin β . The dispersion relation
for mode n is controlled by terms in (2n + 1)β , so the generalization of the trapping
condition to arbitrary n is

α + λ cos (2n + 1)β

sin (2n + 1)β
= k cos [(2n + 1)β − χ] > 0. (3.7)

The second form can be deduced from (3.6) or from Evans’ equation (3.21). Evans’
equation also shows that the solution takes the form of a sum of exponentials of the
form exp {−kx cos [(2n + 1)β − χ] ± kz sin [(2n + 1)β − χ]}, all of which ultimately
decay away from the shore. However, the solutions can have zero-crossings as
functions of x and of z. They are not the sum of normal modes as would be
found for a flat bottom.

4. Cases and approximations
4.1. No rotation

This is the case considered by Greenspan (1970). With f = 0, the buoyancy frequency
is the natural timescale, and we plot ω/N against gl/N 2. Typical results are shown in
figure 1(a, b). The gravest mode is the Stokes mode. The small-ω behaviour is shown
in figure 1(c). Higher modes always exist, but for each value of δ, the dispersion
relation takes one of three forms. For 0 < δ < π/(2n + 1), the relation is very similar
to the Stokes mode. For π/(2n + 1) < δ < π/(n + 1

2
), there is a high-frequency cutoff

ωh visible in figure 1(a) for n = 2. For π/(n + 1
2
) < δ < π/2, there are two branches:

one coming into the origin with an upper cutoff ωl , and one for frequencies in a
second range ωh1

< ω < ωh2
visible in figure 1(b) for n = 2. For δ close to π/2, the

cutoffs all tend to N . Figure 1(d ) shows these cutoffs as a function of δ for the case
n = 2.

4.2. No stratification

This is the case considered by Saint-Guily (1968). The situation is now completely
different because the y-symmetry (l ↔ −l) has been broken. In particular the gravest
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Figure 1. Dispersion relation for f = 0. (a) Bottom slope δ of 20◦. (b) Bottom slope δ of
70◦. (c) Enlargement of (b). (d ) Existence regions for n = 2. To the left of the critical angle
18◦, there is a solution for all ω. Above 18◦, there is a solution for ω/N below the solid curve.
Above 36◦ there is a solution for ω/N above the dashed line and below the dash-dot line (the
two curves asymptote to ω/N = 1 as δ → 90◦).
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Figure 2. Dispersion relation for N = 0. The dotted lines correspond to ωc = f/ cos δ.
(a) Bottom slope of 20◦ (ωc/f = 1.0642). (b) Bottom slope of 70◦ (ωc/f = 2.9238).

mode which propagates with the coast on its left has the low-frequency cutoff ωc.
Figure 2 shows typical dispersion relations, and makes clear when the modes are
actually trapped (this is hard to see in Saint-Guily’s diagrams). All modes have a
branch with a low-frequency cutoff. The even modes have a cutoff for branches that
propagate with the coast on their left (l > 0, anti-Kelvin) while odd modes have a
cutoff for the branch that propagates with the coast on the right (l < 0, Kelvin). The
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Figure 3. Dispersion relation for N = 3f . (a) Bottom slope of 20◦. (b) Bottom slope of 70◦.
The dashed line corresponds to ω = N . The thick solid horizontal curve in (b) is an artifact.

higher modes all have a very low-frequency branch with the coast on its left. This is
a bottom-trapped topographic Rossby wave (Rhines 1970). The counterparts of these
branches for Ball’s (1967) topography are plotted in Munk, Snodgrass & Wimbush
(1970).

4.3. General case

Figure 3 shows the dispersion relation in the case of the full system with N = 3f

for modes 0, 1 and 2. The cutoff at ωc persists. Stratification appears to remove the
low-frequency topographic Rossby waves. It also has an effect for large bottom slopes
for frequencies close to N .

4.4. Approximations

The Boussinesq and hydrostatic approximations change (3.2) so that we can no
longer say that stratification does not affect the Stokes wave. However, the effect of
the hydrostatic approximation is small. Figure 4 shows one case of the dispersion
relation for the lowest mode for the full equations as well as various approximations.
(The rigid-lid case is discussed in the next paragraph.) The Boussinesq approximation
has the very undesirable property of removing the low-frequency cutoff for the gravest
mode: the two dashed lines merge just left of the l-axis and slightly below ωc. The
modes continue as a single curve down to the origin because the quadratic equation
defining l acquires complex roots. These complex-conjugate roots decay offshore, so
they are acceptable trapped modes. However, they are clearly a poor substitute for
the full solution for small ω. It is no surprise that the Boussinesq approximation leads
to problems since the wedge becomes infinitely deep far out to sea, so the assumption
that the buoyancy scale is larger than the depth is clearly wrong there.

Ou (1980) considered the subinertial case with a rigid lid and the Boussinesq and
hydrostatic approximations, and mapped the resulting system onto Ursell’s problem.
In the language of (3.4) and (3.6), α2 = k2 sin2 (2n + 1)β . The wavenumber l then
drops out of the problem and the dispersion relation becomes

ω2

f 2
=

sin2 β

sin2 (2n + 1)β
(4.1)

which is (4.5) of Ou (1980). The modes require n > 0. The trapping condition becomes
ωl < 0, which shows that these modes are Kelvin-like (propagating with the coast on
their right). This is a highly degenerate case since the only relevant parameter is the
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Figure 4. Dispersion relation for the gravest mode with δ = 20◦, exact and approximate.

Burger number S = (N/f ) tan δ; this reduction only occurs when both the rigid-lid
and Boussinesq approximations hold at the same time.

Without the hydrostatic approximation, the Ou modes exist and are still
independent of l, but no longer depend on S alone: there is now separate dependence
on δ and on N/f . When the Boussinesq approximation is no longer made, the
l-dependence returns and we are back to the general situation above.

Superinertial modes of this kind do not exist. They would require s2 < 0 and hence
β imaginary, but then the right-hand side of (4.1) is less than 1 in magnitude so the
mode is not superinertial, which is a contradiction. This argument does not depend
on the hydrostatic approximation.

5. General topography
Z91 shows that the results of Shen et al. (1968) provide the correct leading-

order solution to the edge-wave dispersion relation for a homogeneous fluid in the
small-slope limit. We could hence follow Keller & Mow (1968, § 5) which gives the
appropriate method for the stratified case (the addition of rotation does not alter
the dispersion relation to leading order). However Z91 provides a neat way of writing
down the result which uses a transformation similar to that of § 3.

We rewrite the set of equations (3.4) for a general bottom profile z = −H (x); the
only change is the bottom boundary condition which becomes

Sz̃ + s−1HxSx +

[
−f l

ω
s−1Hx − sb

2

]
S = 0 on z̃ = −s−1H (x). (5.1)
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We now stretch variables using ζ = kz̃ and η = εkx, where ε is the small slope near
the origin, so that kH (x) = h(εkx). This gives

Sζζ + ε2Sηη − S = 0, (5.2a)

Sζ − νS = 0 at ζ = 0, (5.2b)

Sζ − σS − εγ s−1h′S + ε2s−1h′Sη = 0 at ζ = −s−1h(η), (5.2c)

where now ν = λ/k, σ = sb/2k and γ = f l/ωk (0 � σ < 1 for non-zero l). These
definitions are not the same as in Z91.†

While Z91 claims to give results valid for general stratification and rotation, this is
not strictly true because of the presence of the σ term. We now modify the results of
Z91 for the system (5.2). The essential difference comes from the presence of the σS

term in the lower boundary condition. The leading-order dispersion relation is given
by the solution of the equations

κ tanh s−1κh(q) =
ν0 − σ

1 − ν0σ/κ2
, κ =

√
p2 + 1,

(5.3)
1

πε

∫ ∞

−∞
q(p, ν0) dp = 2n+ 1 +

γ√
1 − σ 2

.

In these and following expressions, ν0 and λ0 are the leading-order approximations
to ν and λ. The first equation in (5.3) comes from solving the normal-mode problem
in ζ with ε = 0 in (5.2); this is a problem in ζ only and the offshore coordinate η

then only enters via the dependence of h on q . The result is a transcendental relation
between κ and h, which differs from Z91’s result for non-zero σ . The sign of the last
term differs from that of Z91 because of Z91’s choice of axes and of time-dependence.
Its form is most easily found by following the approach of Sun & Shen (1994). This
entails solving a first-order ordinary differential equation for a function a(p), which
leads to a phase factor whose argument gives the fraction.

We are hence led to consider the integral

F (ν0, σ ) =
2

π

∫ ∞

1

h−1

(
sκ−1 tanh−1 ν0 − σ

κ − ν0σκ−1

)
κ dκ√
κ2 − 1

. (5.4)

We can produce the general answer merely by using the function F so that

ε−1F (λ/k, σ ) = 2n + 1 +
γ√

1 − σ 2
. (5.5)

This relation automatically incorporates the trapping condition unlike the quadratic
used for the wedge, which needed (3.7) in addition.

For the wedge where h = η, the integral can be evaluated in closed form: F =
s(sin−1 ν0 − sin−1 σ ) and the dispersion relation becomes

λ0 = k sin

[
s−1ε

(
2n + 1 +

γ√
1 − σ 2

)
+ sin−1 σ

]
, (5.6)

which is consistent to O(ε2) with (3.6) since s−1ε = s−1 tan δ = tanβ = β + O(β3),
and

χ = sin−1 α

k
= sin−1

[
− sb

2k
cosβ − f l

ωk
sin β

]
≈ −sin−1 σ − γβ√

1 − σ 2
+ O(β2). (5.7)

† Note that the second term of (4.1) in Z91 should be ±εµγh′φ.
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All angles are small here so O(ε2) and O(β2) have the same effect, although if s is
small, ε has to be very small indeed for expansions in β to make sense.

Plots of the dispersion relation are qualitatively the same as those shown in
figures 1–3. The rigid-lid Boussinesq case gives ν0 = σ = 0 and γ = sgn l(f/ω) in
(5.4), so (5.5) becomes

ω

f
= − sgn l

2n + 1
, (5.8)

which is the small-β limit of (4.1). Subinertial modes exist, but not superinertial
modes, since the right-hand side is always less than 1 in magnitude. The hydrostatic
approximation is not important here, since β drops out of the dispersion relation.

6. Conclusion
The entire discrete spectrum of trapped edge waves has been found for a stratified

rotating fluid over a constant slope, and the asymptotic form of the dispersion relation
has been found over a gently sloping bottom. Superinertial trapped modes do not
exist in the rigid-lid Boussinesq case.

As in the homogeneous case, a continuum also exists for the wedge and may be
found by adapting the results of Whitham (1979) and Peters (1952) to the present
situation. The condition for the existence of the continuum is k < λ, which may be
solved to give g2l2 < ω2(ω2 − f 2).

Detailed observations of these waves do not yet appear to exist. Presumably existing
observations of sea-surface displacement for edge waves (see e.g. references in Munk
et al. 1970) incorporate some baroclinic contribution. One might also expect that they
would be important in determining the behaviour of the internal tide as it approaches
the shore.

This work was inspired by Myrl Hendershott’s lecture ‘Are there internal edge
waves?’ given at a workshop organized by Walter Munk in August 2001. I am
grateful to them both for helpful advice, as well as to an anonymous referee. NASA
Goddard grant NAG5-12388 is acknowledged.
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